|
| 1 Horror Vacui     2 A Very Patient Turtle Who Draws Lines     3 A Taxonomy of Fractology     4 Gallery of Specimens |
| Root 2 Family | Root 3 Family | Root 4 Square Grid Family | Root 4 Triangle Grid Family |
| Root 5 Family | No Root 6! | Root 7 Family | Root 8 Family |
| Root 9 Square Grid Family | Root 9 Triangle Grid Family | Root 10 Family | Root 12 Family |
| Root 13 Square Grid Family | Root 13 Triangle Grid Family | Root 16 Square Grid Family | Root 16 Triangle Grid Family |
| Root 17 and Beyond... | 5 My Brain Fillith Over | 6 References | 7 Acknowledgements |
|
References
[0] Abelson, H., and diSessa, A. Turtle Geometry. MIT Press, 1986. [1] Bandt, C. and Gummelt, P. Fractal Penrose Tilings I. Construction and matching rules. Aequationes Mathematicae, vol. 53, Numbers 1-2, Feb. 1997 [2] Barnsley, M. Fractals Everywhere. Academic Press, 1993. [3] Carbajo, V. Fractal artworks published online at: http://www.carbajo.net/ [4] Fukuda, M. Shimizu and G. Nakamura, New Gosper Space Filling Curves, Proceedings of the International Conference on Computer Graphics and Imaging (CGIM2001) 34--38 . 2001 [5] Dekking, F. M. Recurrent Sets: a Fractal Formalism. Delft University of Technology, 1982. [6] Fiedorowicz, Z. . root 4 triangle grid family triangle curve variation, published at: http://www.math.osu.edu/~fiedorow/math655/examples2.html [7] Gardner, M. In which "monster curves" force redefinition of the word "Curve". Scientific American. 235. 1976 [8] Gelbrich, G. Fractal Penrose Tiles II: Tiles with fractal boundary as duals of penrose tiles. Aequationes Mathematicae, vol. 54, Numbers 1-2, Aug. 1997 [9] Hilbert, D. "Uber die stetige Abbildung einer Linie auf ein Flachenstuck", Math. Ann., 1891 (38), pp. 459-460. [10] Hutchinson, J. Fractals and Self-Similarity. Indiana University Math. J. 30 (5) 713-747 1981. [11] Karzes, T. Tiling Fractal curves published online at: http://www.karzes.com/ [12] Koch, H. "Sur une courbe continue sans tangente, obtenue par une construction geometrique elementaire." Archiv fšr Matemat., Astron. och Fys. 1, 681-702, 1904 [13] Koch, H. "Une methode geometrique elementaire pour l'etude de certaines questions de la theorie des courbes planes", Acta Mathematica, Stockholm, 1906 (30), pp. 145-174. [14] Mandelbrot, B. The Fractal Geometry of Nature. W. H. Freeman and Company. 1977 [15] Mandelbrot, B. The Fractal Geometry of Nature, 1977 (illustrating the quadric Koch Island: page 50) [16] Mandelbrot, B. The Fractal Geometry of Nature, 1977 (describing the "Quartet": page 73) [17] McKenna, D. Fractal artworks, available at: http://www.mathemaesthetics.com/MathArtPrints.html [18] Peano, G. "Sur une courbe, qui remplit toute une aire plane", Mathematische Annalen 36 (1): 157Ð160. 1890 [19] Prusinkiewicz, P. and Lindenmayer, A. The Algorithmic Beauty of Plants. Springer, 1990 [20] Sagan, H. Space-Filling Curves, Springer-Verlag, New York, 1991 [21] Schraa, W. Range Fractal, published online at: http://wolter.home.xs4all.nl/index.html [22] Teachout, G. Spacefilling curve designs featured in the web site: http://teachout1.net/village/ |
|
| 1 Horror Vacui     2 A Very Patient Turtle Who Draws Lines     3 A Taxonomy of Fractology     4 Gallery of Specimens |
| Root 2 Family | Root 3 Family | Root 4 Square Grid Family | Root 4 Triangle Grid Family |
| Root 5 Family | No Root 6! | Root 7 Family | Root 8 Family |
| Root 9 Square Grid Family | Root 9 Triangle Grid Family | Root 10 Family | Root 12 Family |
| Root 13 Square Grid Family | Root 13 Triangle Grid Family | Root 16 Square Grid Family | Root 16 Triangle Grid Family |
| Root 17 and Beyond... | 5 My Brain Fillith Over | 6 References | 7 Acknowledgements |
|
Brain-filling Curves - A Fractal Bestiary
by Jeffrey Ventrella Distributed by Lulu.com Cover Design by Jeffrey Ventrella |
Book web site:
BrainFillingCurves.com
ISBN 978-0-9830546-2-7 Copyright © 2012 by Jeffrey Ventrella |
eyebrainbooks.com |
FractalCurves.com |